
POWER RECIPROCITY

YIHANG ZHU

1. General reciprocity for power residue symbols

1.1. The product formula. Let K be a number �eld. Suppose K ⊃ µm. We
will consider the m-th norm-residue symbols for the localizations Kv of K. We will
omit m from the notation when convenient.

Let v be a place of K. Recall that for a, b ∈ K×v , we de�ne

(a, b)Kv
= (a, b)v :=

ρv(a)b1/m

b1/m
∈ µm,

where ρv : K×v → Gab
Kv

is the local Artin map. Recall, when v = p is a non-
archimedean place coprime to m, we have the following formula (tame symbol)

(a, b)v ≡
[
(−1)αβ

bα

aβ

](q−1)/m

mod p,

where q = N p = |OK/p| , α = v(a), β = v(b). (v is normalized so that its image is
Z.)

In particular, if a, b ∈ O×v , then (a, b)v = 1; if a = π is a uniformizer in Kv and
b ∈ O×v ,

(π, b)v ≡ b(q−1)/m mod p.

Suppose v is an archimedean place. If v is complex, then (, )v = 1. If v is
real, then by assumption R ⊃ µm, so m = 2. In this case we easily see that

(a, b)v =

{
−1, a < 0, b < 0

1, otherwise
,∀a, b ∈ R×.

The following statement is an incarnation of Artin reciprocity.

Proposition 1.2 (Product formula). Let a, b ∈ K×. Then for almost all places v,
we have (a, b)v = 1, and we have ∏

v

(a, b)v = 1.

Proof. [
∏
v(a, b)v]b

1/m = [
∏
v ρv(a)]b1/m. But by the local global compatibility of

the Artin map and the fact that the global Artin map factors throught K×\A×K ,
we conclude that

∏
v ρv(a) = 1 ∈ Gab

K . �

1.3. Calculating the norm residue symbols in the non-tame case. In certain
cases, the product formula provides a way of computing the norm-residue symbol
(, )Kv,m when the residue characteristic of Kv divides m.
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Example 1.4. K = Q,m = 2. We would like to compute (, )Q2
. We have Q×2 /2 ∼=

2Z/2Z×Z×2 /2 ∼= 2Z/2Z×(Z/8Z)×. To know (, )Q2,2, it su�ces to compute the pairing
between 2, 3, 5. We have

(2, 2)Q2 =
∏
p 6=2

(2, 2)Qp = 1,

(2, 3)Q2
= (2, 3)Q3

= −1,

(2, 5)Q2
= (2, 5)Q5

= −1,

(3, 3)Q2
= (3, 3)Q3

= (3,−1)Q3
= −1,

(3, 5)Q2
= (3, 5)Q3

(3, 5)Q5
= −1×−1 = 1,

(5, 5)Q2
= (5, 5)Q5

= (5,−1)Q5
= 1.

Example 1.5. K = Q(ζ3),m = 3. We would like to compute (, )v where v is
the unique place over 3. This is needed for the cubic reciprocity. We partially
follow the hints of an exercise in Joe Rabino�'s notes. Let ζ = ζ3, λ = 1 − ζ,
ηi = 1 − λi. We have 3OK = λ2OK , and λ is a uniformizer of Kv. As usual let
U (i) = 1 + λiOv. Using the exponential isomorphism, we see that U (2) ∼−→ λ2Ov,
identifying U (4) ⊂ U (2) with λ4Ov = 3λ2Ov ⊂ λ2Ov. Hence U (4) ⊂ (K×v )3,
and K×v /3 is a 4-dimensional F3 vector space, with a basis given by λ, η1, η2, η3.
We need to compute the pairings (, )v between them. Firstly, −1 is a cubic, so
(a, a)v = (a,−a)v = 1,∀a ∈ K×v . We have

ηi+j = ηj + λjηi,

1 = ηj/ηi+j + λjηi/ηi+j .

Using (a, a) = 1 and (ηk, λ
k) = 1 since ηk + λk = 1, we have

1 = (ηj/ηi+j , λ
jηi/ηi+j) = (ηj , ηi)(ηi+j , ηj)(ηi, ηi+j)(λ, ηi+j)

j(1)

Therefore if i + j ≥ 4, we have (ηi, ηj) = 1. So the only left case for (ηi, ηj) is

i = 1, j = 2. This we can use the product formula to compute. η1 = ζ ∈ O×K is a
unit.

η2 = 1− λ2 = 1− (1− ζ)2 = 2ζ − ζ2 = 1 + 3ζ,

hence

NK/Q η2 = (1 + 3ζ)(1 + 3ζ2) = 1 + 3ζ + 3ζ2 + 9 = 1− 3 + 9 = 7.

Namely, w = (η2) is a split prime over 7. Hence

(η1, η2)v = (η1, η2)−1
w = (η2, η1)w ≡ η(7−1)/3

1 ∈ F7.

But η
(7−1)/3
1 = ζ2. We conclude that (η1, η2)v = ζ2. Now it remains to compute

(λ, ηi). For i = 1, 2, we have (λ, ηi)
i = (λi, ηi) = 1 since λi + ηi = 1. So (λ, ηi) =

1, i = 1, 2. To compute (λ, η3), we set i = 2, j = 1 in formula (1), then

1 = (η1, η2)(η3, η1)(η2, η3)(λ, η3) = (η1, η2)(λ, η3),=⇒ (λ, η3) = ζ.

In summary, we have the following table.

λ η1 η2 η3

λ 1 1 1 ζ
η1 1 1 ζ2 1
η2 1 ζ 1 1
η3 ζ2 1 1 1
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1.6. The reciprocity law.

De�nition 1.7. Let a ∈ K×, and p a prime ideal of OK . Suppose a is coprime to
p, and suppose p is coprime to m. Then we de�ne the power residue symbol to be(

a

p

)
:= (πp, a)p

for any uniformizer πp of p. That this is well de�ned follows from the formula for
tame symbols. In particular(

a

p

)
≡ a(N p−1)/m mod p.

The power residue symbol is a generalization of the Legendre symbol.

De�nition 1.8. Let a ∈ K×. Let b =
∏

pep be a fractional ideal of K. Suppose a
is coprime to b, and suppose b is coprime to m. We de�ne the generalized Jacobi
symbol to be (a

b

)
:=
∏
p

(
a

p

)ep
.

Here when ep = 0, we understand the corresponding term as 1 by conventions.
When b = bOK is principal, we write

(
a
b

)
:=
(
a
b

)
.

Remark 1.9. The generalized Jacobi symbol is evidently multiplicative in both
variables in K× and IK .

Theorem 1.10 (Reciprocity law for generalized Jacobi symbols). Let a, b ∈ K×.
Suppose a and b are coprime to each other. Also suppose both a and b are coprime

to m. Then we have (a
b

)( b
a

)−1

=
∏
v|m∞

(a, b)v.

Proof.

LHS =
∏
v|b

(a
v

)v(b)∏
v|a

(
b

v

)−v(a)

=
∏
v|b

(πv, a)v(b)
v

∏
v|a

(πv, b)
−v(a)
v

=
∏
v|b

(b, a)v
∏
v|a

(a, b)−1
v =

∏
v|ab

(b, a)v =
∏
v|m∞

(a, b)v.

The last equality follows from the product formula. �

Remark 1.11. When m ≥ 3, then the archimedean places make no contribution
since they are all complex.

Remark 1.12. By the theorem, obtaining a power reciprocity law is equivalent to
computing the pairings (, )v for v|m. We have done this in Examples 1.4 and 1.5,
which will produce quadratic reciprocity and cubic reciprocity. However, in general,
the explicit calculation of (a, b)v for v|m is a highly nontrivial task. Complete
answers to this were only obtained no earlier than 1970s. For reference see Neukirch:
Algebraic Number Theory or the book Invitation to Higher Local Fields.
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2. Cubic reciprocity

Using Examples 1.4,1.5, and Theorem 1.10, we can deduce quadratic and cubic
reciprocity. We only work out cubic reciprocity. Thus we keep the notation in
Example 1.5. Recall that (λ) is the rami�ed prime over 3. We write v for this
place. We say a ∈ K× is primary if a ∈ ±1 + 3OK . This implies a ∈ K×/3 is
spanned by η2 and η3.

Theorem 2.1 (Cubic reciprocity, Gauss-Eisenstein). Let a, b ∈ K× be primary. In

particular they are coprime to 3. Suppose a and b are coprime to each other, then(a
b

)
=

(
b

a

)
.

Proof. By Example 1.5, we have (a, b)v = 1 for the place v above 3. �

Remark 2.2. If a ∈ OK is coprime to λ, then a ∈ a1 +3OK , for a1 ∈
{
±1,±ζ,±ζ2

}
.

In other words, aOK = a′OK for some a′ ∈ ±1 + 3OK primary. Note that for b
coprime to a, the symbol

(
b
a

)
only depends on aOK , so we may always replace a

by a′ to calculate it.

Theorem 2.3 (Complementary laws). Let a ∈ K× be primary. Write a = ±(1 +
3(m+ nζ)) with m,n ∈ Z. Then(

ζ

a

)
= ζ−m−n,

(
λ

a

)
= ζm.

Proof. Since
(
a

)
by de�nition only depends on aOK , we may assume a = 1+3(m+

nζ). Since ζ is a unit,by Theorem 1.10 we have(
ζ

a

)
= (ζ, a)v.

Applying the logarithm and comparing coe�cients it is not hard to see a = ηm+n
2 ηm3 ∈

K×v /3. Recall ζ = η1, so we obtain the desired value of
(
ζ
a

)
from the calculation

in Example 1.5. Next we use the product formula to compute(
λ

a

)
=
∏
p|a

(
λ

p

)vp(a)

=
∏
p|a

(a, λ)p = (a, λ)−1
v = (λ, a)v = (λ, ηm+n

2 ηm3 )v = ζm.

�

Remark 2.4. Using the complementary law and the remark before it, we can reduce
the calculation of any

(
b
a

)
with a coprime to λ and a, b coprime to each other, to

the case a, b are primary.

Example 2.5. Let p ∈ Z be a prime number not equal to 3. Let a ∈ Z be coprime
to p. We ask the question of whether a is a cubic in Fp. If p ≡ 2 mod 3, then
x 7→ x3 is an automorphism of F×p ∼= Z/(p− 1)Z, so the answer is always positive.
We assume p ≡ 1 mod 3. Then p is split in K. Write pOK = pp̄. We may take
π ∈ OK primary such that p = πOK . Noting that OK/p = Fp, we see that a is a
cubic in Fp i� ( a

π

)
= 1.

But the last symbol can be computed using the reciprocity laws above.
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For example, we take a = 2, p = 61. We have 61 = (7 + 2
√
−3)(7− 2

√
−3). The

number 7 + 2
√
−3 is not primary. We have

7 + 2
√
−3 +

1−
√
−3

2
= 3

5 +
√
−3

2
≡ 0 mod 3,

so 7 + 2
√
−3 ≡ −1+

√
−3

2 = ζ mod 3. We take π = (7 + 2
√
−3)ζ2 = −1−9

√
−3

2 to be
the primary representative. Note a = 2 is also primary, and it is an inert prime in
K. We compute (

2

π

)
=
(π

2

)
≡ π(22−1)/3 = π mod 2.

But π ≡ −1−
√
−3

2 = ζ2 mod 2, hence
(

2
π

)
= ζ2 6= 1. We conclude that 2 is not a

cubic in F61.
Let's try a = 7, p = 61. Then(

7

π

)
=
(π

7

)
=

(
π

q

)(
π

q̄

)
,

where q, q̄ are the two split primes over 7. Reduced modulo q and q̄ respectively, the
two symbols are congruent to π̃(7−1)/3 = π̃2, where π̃ is the respective reduction of
π. But the two reductions of π can be computed by plugging the two square roots

of −3 in F7, namely ±2, into the formula π = −1−9
√
−3

2 . We get π̃ = 1 or 5, so

π̃2 = 1 or 4 in F7. Hence exactly one of
(
π
q

)
and

(
π
q̄

)
is equal to 1, so

(
7
π

)
6= 1,

and 7 is not a cubic modulo 61.

Theorem 2.6 (Euler's conjecture). Let p ∈ Z be a prime. p is of the form x2 +
27y2, x, y ∈ Z if and only if p ≡ 1 mod 3 and 2 is a cubic modulo p.

Proof. Suppose p = x2 + 27y2. Then p ≡ 1 mod 3. We prove 2 is a cubic modulo
p. We have p = (x+3y

√
−3)(x−3y

√
−3). Since x 6= 0, the number π = x+3y

√
−3

is primary. As in the previous example, we need only prove
(

2
π

)
= 1. As before, we

have (
2

π

)
=
(π

2

)
≡ π mod 2.

But π = x − 3y + 6y 1+
√
−3

2 ≡ x − 3y ≡ x − y mod 2. We know x and y have

unequal parity since p = x2 + 27y2 is odd. Hence
(

2
π

)
= 1, as desired.

Conversely, suppose p ≡ 1 mod 3 and 2 is a cubic modulo p. Write p = ππ̄
with π a primary element in OK . The fact that 2 is a cubic modulo p means that(

2
π

)
= 1. But the same computation as before implies that π ∈ 1 + 2OK . Let

π = 1 + 2(a+ b 1+
√
−3

2 ) = 1 + 2a+ b+ b
√
−3, a, b ∈ Z. By assumption π is primary,

so π = ±1 + 3(u + v 1+
√
−3

2 ), u, v ∈ Z. Comparing coe�cients of
√
−3 we see that

3v/2 = b, so b is divisible by 3. Hence

p = ππ̄ = (1 + 2a+ b)2 + 3b2 = (1 + 2a+ b)2 + 27(b/3)2.

�

Example 2.7. We have seen that 2 is not a cubic modulo 61. This can be alterna-
tively checked by showing 61 6= x2 + 27y2 for any x, y ∈ Z. We have 43 = 42 + 27
is a prime, so 2 is a cubic modulo 43.


	1. General reciprocity for power residue symbols
	1.1. The product formula
	1.3. Calculating the norm residue symbols in the non-tame case
	1.6. The reciprocity law

	2. Cubic reciprocity

