POWER RECIPROCITY

YIHANG ZHU

1. GENERAL RECIPROCITY FOR POWER RESIDUE SYMBOLS

1.1. The product formula. Let K be a number field. Suppose K O pu,,- We
will consider the m-th norm-residue symbols for the localizations K, of K. We will
omit m from the notation when convenient.

Let v be a place of K. Recall that for a,b € K, we define

v

P (a)bl/m

(a,b)k, = (a,b), = piim

€ Um,

where p, : K — QS%?U is the local Artin map. Recall, when v = p is a non-
archimedean place coprime to m, we have the following formula (tame symbol)

(g—=1)/m
} mod p,

(@t = -0

where ¢ = Np = |Ok/p|,a = v(a), 8 = v(b). (v is normalized so that its image is
7.)
In particular, if a,b € O, then (a,b), = 1; if @ = 7 is a uniformizer in K, and
be OF,
(m,b)y = bl D/™ mod p.

Suppose v is an archimedean place. If v is complex, then (,), = 1. If v is
real, then by assumption R O pu,,, so m = 2. In this case we easily see that
-1, a<0,b<0
(aa b)v = ’ .
1, otherwise
The following statement is an incarnation of Artin reciprocity.

,Va, b e R*.

Proposition 1.2 (Product formula). Let a,b € K*. Then for almost all places v,
we have (a,b), =1, and we have

H(a,b)v =1.

v

Proof. [[1,(a,b),]b*™ = [[], pu(a)]b*/™. But by the local global compatibility of
the Artin map and the fact that the global Artin map factors throught K *\Ax,
we conclude that [], p,(a) =1 € Gg. O

1.3. Calculating the norm residue symbols in the non-tame case. In certain
cases, the product formula provides a way of computing the norm-residue symbol
(, )k, m when the residue characteristic of K, divides m.
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Ezample 1.4. K = Q,m = 2. We would like to compute (,)g,. We have QJ /2 &
2L/ 7.5 |2 =2 22122 x (7,/87.)* . To know (, ), 2, it suffices to compute the pairing
between 2, 3,5. We have

(273)Q2 = (2’3)(@3 =-1,
(275)Q2 = (275)(@5 = -1,
(3’3)(@2 = (373)Q3 = (3’ 1)@3 =-1,

(375)(@2 = (3»5)(@3(3’5 Q =—1x-1=1,
(575)(@2 = (575)@5 = (57 _1)Q5 =1

Ezample 1.5. K = Q(¢(3),m = 3. We would like to compute (,), where v is
the unique place over 3. This is needed for the cubic reciprocity. We partially
follow the hints of an exercise in Joe Rabinoff’s notes. Let ( = (3,A = 1 — (,
7 = 1 — A We have 30k = A20k, and ) is a uniformizer of K,. As usual let
U =1+ X0O,. Using the exponential isomorphism, we see that U — \20,,,
identifying U ¢ U® with A0, = 3X20, C A?0,. Hence UY C (KX)?,
and K/3 is a 4-dimensional F3 vector space, with a basis given by X, 1,72, 73.
We need to compute the pairings (,), between them. Firstly, —1 is a cubic, so
(a,a)y = (a,—a), = 1,Ya € K*. We have

Nivj = 105 + X,
L= n5/Nij + N0 /0ij-
Using (a,a) = 1 and (nx, \F) = 1 since n;, + A\F = 1, we have
(1) L= (0 /Miegs N0 [0i5) = (05 13) (i 5 13) (s ik ) O0s i)
Therefore if ¢ + j > 4, we have (n;,77;) = 1. So the only left case for (n;,n;) is

i =1,j = 2. This we can use the product formula to compute. 7, = ¢ € O is a
unit.

=1-M=1-(1-¢=20-¢=1+3,
hence
Nijgme = (1+30)(1+3%) =1+3C+332+9=1-3+9="T.
Namely, w = (12) is a split prime over 7. Hence

_ 7T—1)/3
(m,m2)o = (n,m2)2" = () =0\ /% € By

But 7757_1)/3 = (2. We conclude that (n1,72), = (2. Now it remains to compute
(A\,mi). For i = 1,2, we have (A, n;)" = (\',n;) = 1 since X +n; = 1. So (\,n;) =
1,7 =1,2. To compute (X, n3), we set i = 2,5 = 1 in formula (1), then

L= (1, m2) (3, m1) (2, m3) (A, m3) = (1, m2) (A, m3), = (A, m3) = C.

In summary, we have the following table.

‘ A m me m3
A1 1 1 ¢
m|1 1 ¢2 1
|1 ¢ 1 1
¢ 1 1 1
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1.6. The reciprocity law.

Definition 1.7. Let a € K*, and p a prime ideal of Ok. Suppose a is coprime to
p, and suppose p is coprime to m. Then we define the power residue symbol to be

<Z> i= (mp, a)p

for any uniformizer 7, of p. That this is well defined follows from the formula for
tame symbols. In particular

(a) = qNP=D/™  mod p.
p
The power residue symbol is a generalization of the Legendre symbol.

Definition 1.8. Let a € K*. Let b =[] p¢* be a fractional ideal of K. Suppose a
is coprime to b, and suppose b is coprime to m. We define the generalized Jacobi

symbol to be
Cp
O-1()"

Here when e, = 0, we understand the corresponding term as 1 by conventions.
a a

When b = bOg is principal, we write (3) = (E)'

Remark 1.9. The generalized Jacobi symbol is evidently multiplicative in both
variables in K> and If.

Theorem 1.10 (Reciprocity law for generalized Jacobi symbols). Let a,b € K*.
Suppose a and b are coprime to each other. Also suppose both a and b are coprime

to m. Then we have
-1
()(2) - ILen-

v|moo

Proof.

an v(b) p\ V@

= — = — v(b) —v(a)
LHS l—lg (v) H (U) l—g(ﬂv,a)v H(vab)y
= [[®. @) [J(a.0);" = [[(0.a)o = ] (a.b)s.
v|b vla v|ab v|moo

The last equality follows from the product formula. |

Remark 1.11. When m > 3, then the archimedean places make no contribution
since they are all complex.

Remark 1.12. By the theorem, obtaining a power reciprocity law is equivalent to
computing the pairings (,), for v/m. We have done this in Examples and
which will produce quadratic reciprocity and cubic reciprocity. However, in general,
the explicit calculation of (a,b), for v|m is a highly nontrivial task. Complete
answers to this were only obtained no earlier than 1970s. For reference see Neukirch:
Algebraic Number Theory or the book Invitation to Higher Local Fields.
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2. CUBIC RECIPROCITY

Using Examples [[.4T.5] and Theorem [I.10} we can deduce quadratic and cubic
reciprocity. We only work out cubic reciprocity. Thus we keep the notation in
Example Recall that (\) is the ramified prime over 3. We write v for this
place. We say a € K* is primary if a € £1 + 3Ok. This implies a € K*/3 is
spanned by 7y and 3.

Theorem 2.1 (Cubic reciprocity, Gauss-Eisenstein). Let a,b € K* be primary. In
particular they are coprime to 3. Suppose a and b are coprime to each other, then

a b
(5)=(2)
Proof. By Example we have (a,b), = 1 for the place v above 3. O

Remark 2.2. If a € Ok is coprime to A, then a € a1 +30k, for a; € {:I:l, =+, :i:(z}.

In other words, aOx = a’Ok for some o' € +1 + 3O0f primary. Note that for b

coprime to a, the symbol (9) only depends on aOg, so we may always replace a

a
by a’ to calculate it.

Theorem 2.3 (Complementary laws). Let a € K* be primary. Write a = £(1 +
3(m +n()) with m,n € Z. Then

(9-c) -

Proof. Since (5) by definition only depends on aOk, we may assume a = 1+3(m+

n(). Since ( is a unit,by Theorem we have

(%) =con
5y €

Applying the logarithm and comparing coefficients it is not hard to see a = 75
K. /3. Recall { = 7y, so we obtain the desired value of (g) from the calculation

in Example Next we use the product formula to compute

<A> =11 (:)() = T(@ N = (@ N);" = (\a)y = Ay "), = ¢

pla pla
O

Remark 2.4. Using the complementary law and the remark before it, we can reduce
the calculation of any (2) with a coprime to A and a, b coprime to each other, to
the case a,b are primary.

Ezample 2.5. Let p € Z be a prime number not equal to 3. Let a € Z be coprime
to p. We ask the question of whether a is a cubic in F,. If p = 2 mod 3, then
x — 2% is an automorphism of F) = Z/(p — 1)Z, so the answer is always positive.
We assume p = 1 mod 3. Then p is split in K. Write pOx = pp. We may take
7 € Ok primary such that p = 7Ok. Noting that Ok /p = F,, we see that a is a

cubic in F,, iff
a
()
T

But the last symbol can be computed using the reciprocity laws above.
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For example, we take a = 2,p = 61. We have 61 = (74 2y/—3)(7 — 2¢/—3). The
number 7 + 2/—3 is not primary. We have
1—-+-3 5++v-3
7T+2v-3+ 5 =3 + >
$07+2y/-3= _1%\/?3 = (¢ mod 3. We take m = (7+2y/—3)(? = % to be
the primary representative. Note ¢ = 2 is also primary, and it is an inert prime in

K. We compute
<2> = (I> =x@-D/3 — 1 mod 2.
T 2

But 7 = —5Y=3 = ¢2 mod 2, hence (2) = ¢ # 1. We conclude that 2 is not a
cubic in Fﬁl.
Let’s try a = 7,p = 61. Then

O-G-G)G)

where q, q are the two split primes over 7. Reduced modulo q and g respectively, the
two symbols are congruent to #(7~1/3 = 72 where 7 is the respective reduction of

m. But the two reductions of 7 can be computed by plugging the two square roots

of —3 in F7, namely £2, into the formula 7™ = %. We get @ = 1 or 5, so

72 =1 or 4 in F7. Hence exactly one of (%) and (%) is equal to 1, so (1) # 1,

=0 mod 3,

and 7 is not a cubic modulo 61.

Theorem 2.6 (Euler’s conjecture). Let p € Z be a prime. p is of the form z% +
27y% z,y € Z if and only if p=1 mod 3 and 2 is a cubic modulo p.

Proof. Suppose p = 2 + 27y%. Then p =1 mod 3. We prove 2 is a cubic modulo
p. We have p = (z+3yv/—3)(z —3yv/—3). Since z # 0, the number 7 = 2 + 3y+/—3

is primary. As in the previous example, we need only prove (2) = 1. As before, we

have
(i) = (g) =7 mod 2.

But m = x—3y+6y% =x—3y =2 —y mod 2. We know = and y have
unequal parity since p = 22 + 27y is odd. Hence (%) =1, as desired.

Conversely, suppose p = 1 mod 3 and 2 is a cubic modulo p. Write p = 77
with 7 a primary element in Ok. The fact that 2 is a cubic modulo p means that

(2) = 1. But the same computation as before implies that 7 € 1 + 20k. Let
m=142(a+ b@) =1+2a+b+b/-3,a,b € Z. By assumption 7 is primary,
som=+1+3(u+ v%),u,v € Z. Comparing coefficients of v/—3 we see that
3v/2 = b, so b is divisible by 3. Hence
p=77=(1+2a+b)?+3b% = (1+2a+b)?+27(b/3).
O
Ezample 2.7. We have seen that 2 is not a cubic modulo 61. This can be alterna-

tively checked by showing 61 # 22 + 27y? for any x,y € Z. We have 43 = 42 + 27
is a prime, so 2 is a cubic modulo 43.
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